A Systematic Approach to Learning Object Segmentation from Motion
نویسنده
چکیده
This paper describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task. A video camera and a background subtraction algorithm can automatically produce a large database of motion-segmented images. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape.
منابع مشابه
Segmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کاملObject Detection, Tracking, and Motion Segmentation for Object-level Video Segmentation
We present an approach for object segmentation in videos that combines frame-level object detection with concepts from object tracking and motion segmentation. The approach extracts temporally consistent object tubes based on an off-the-shelf detector. Besides the class label for each tube, this provides a location prior that is independent of motion. For the final video segmentation, we combin...
متن کاملبخشبندی معنادار مدل سهبعدی اجسام بر اساس استخراج برجستگیها و هسته جسم
3D model segmentation has an important role in 3D model processing programs such as retrieval, compression and watermarking. In this paper, a new 3D model segmentation algorithm is proposed. Cognitive science research introduces 3D object decomposition as a way of object analysis and detection with human. There are two general types of segments which are obtained from decomposition based on thi...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملMotion Segmentation based on On-line Non-parametric Learning using RGB-D Data
Motion segmentation is a fundamental technology in many robotic applications, such as mapping and navigation in dynamic environments. In this study, we propose a novel motion segmentation approach based on on-line non-parametric learning using RGB-D data. The proposed approach requires no prior information, such as hand-labelled initial segmentation. Foreground cues are derived from dense optic...
متن کامل